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Abstract

An elasticÐplastic material model with internal variables and thermodynamic potential\ not admitting
hardening states out of a saturation surface\ is assumed as a basis to formulate a statical Melan!type
shakedown theorem[ Grounding on the optimality conditions relative to the shakedown load multiplier
problem for a structure subjected to cyclic loads\ the impending inadaptation collapse mechanism at the
shakedown limit state is analyzed and discussed[ It is shown that the adopted model is able to catch
ratchetting collapse mode at a structural level[ Numerical results for a simple structure are _nally reported[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Shakedown analysis considers elasticÐplastic solid bodies or structures subjected to variable
repeated loads and studies the safety condition under which the structure|s response is characterized
by a bounded amount of the overall plastic dissipation work\ namely\ plastic strains are produced
just for an initial loading stage followed by a complete purely elastic response to any further
loading process[ This condition\ called shakedown\ or adaptation\ guarantees the safety of the
structure against a kind of critical state referred to as non!shakedown or inadaptation\ in which\
even if the loads are always below the instantaneous plastic collapse value\ the structure su}ers
continuous production of plastic strains[

The shakedown condition can be considered either with reference to a cyclically variable load
or\ more in general\ to an arbitrarily variable load\ but ranging within a _xed "convex# domain p[
The latter loading scheme is only formally di}erent from the former\ as in fact\ it has already been
proved "Borkowsky and Kleiber\ 0879^ Ko�nig\ 0876^ Polizzotto\ 0871# that if shakedown occurs
for a cyclic load path travelling on the load domain boundary\ so called Envelope Load History
"Polizzotto\ 0871^ Panzeca and Polizzotto\ 0877#\ then it will occur for any load path "even not
cyclic# inside the convex load domain[ Hereinafter we refer to a cyclic load programme without
losing generality[
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Experimental tests on simple steel structures have shown that\ as the cyclic load exceeds some
threshold\ two kinds of critical states can be envisaged\ Ponter "0872#[ The _rst is characterized by
the fact that plastic strains increase cycle after cycle so that\ after a certain number of cycles\ the
net accumulation of plastic strains somewhere in the structure will exceed the material ductility
limit\ or it becomes intolerably large for serviceability[ This inadaptation mechanism is known as
incremental collapse mode or ratchettin`[ The second critical state exhibits a continuous production
of plastic strains along the cycle as the former but with zero plastic strain increment in the cycle[
This inadaptation mechanism gives rise to low!cycle fatigue phenomena and it is known as
alternatin` plasticity collapse mode or plastic shakedown[

The classical shakedown analysis based on perfectly!plastic material models is fully able to catch
these two kinds of behaviour "Gokhfeld and Cherniavsky\ 0879^ Polizzotto\ 0882#[ However for a
better material modelling hardening has to be considered[ The _rst attempt to introduce hardening
into shakedown analysis goes back to Melan "refer to Koiter\ 0859#\ who considered unlimited
"i[e[ inde_nite capacity of# linear kinematic hardening[ Neal "0849# proposed a one!dimensional
overlay model based on the Masing rule able to account for limited kinematic hardening[ Maier
"0862# introduced unlimited linear hardening for piecewise linear elasto!plasticity with interacting
yield planes[ More recently\ Maier "0876#\ Maier and Novati "0876# considered the case of non!
linear isotropic hardening[ The list of papers in this context could be richer\ but the main point we
would like to bring into prominence is that introduction of hardening material behaviour gives
rise to some drawbacks\ namely]

"i# for unlimited linear or non!linear isotropic hardening\ shakedown will always occur\ even if
several loading cycles may be required and a large amount of plastic strains produced^

"ii# for unlimited linear or non!linear kinematic hardening the only kind of inadaptation mech!
anism that can be found is of alternating plasticity type[

Basically\ every time unlimited hardening is allowed\ the ratchetting collapse mode is ruled out
against experimental evidence "Ko�nig\ 0876^ Ponter\ 0864#[

In order to avoid such a disadvantage it is essential to bound the material hardening capacity in
such a way that eventually perfectly!plastic behaviour is recovered after a certain straining process[
Weichert and Gross!Weege "0877# proposed a shakedown theory based on internal variable
plasticity models and two!surface plasticity theory^ alternatively Stein et al[ "0881# proposed an
overlay model based on a generalization of the Masing rule and also presented an e}ective
numerical procedure to face the statical shakedown problem[ Polizzotto et al[ "0880# presented a
complete shakedown formulation for material models with internal variable\ discussing also the
shortcoming obtained for some constitutive models[ A relevant contribution has been recently
given by Pycko and Maier "0884#\ in the context of nonassociative hardening elasticÐplastic
material models\ in which the concept of {{asymptotic saturation state||\ giving rise to a convex
bounding surface in the internal variable space\ is employed[

In this paper the shakedown problem is formulated making use of a constitutive elasticÐplastic
material model\ Polizzotto and Fuschi "0884#\ Fuschi and Polizzotto "0885#\ with internal variables
and thermodynamic potential\ not admitting hardening states out of a saturation surface[ This
surface\ de_ned in the internal variables space "static internal variables space x#\ bounds the
hardening capacity of the material avoiding the drawbacks above!mentioned[ The existence of
such a saturation surface or\ equivalently\ the existence of a _nite hardening domain in the static
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internal variables space is a direct consequence of the boundedness of the energy that can be stored
in the material internal micro!structure[ As shown in Polizzotto and Fuschi "0884#\ the de_nition
of a saturation surface implies the existence of a bounding surface in the stress space as the envelope
surface of all the yield surface con_gurations corresponding to hardening states not external to the
hardening surface[ With this assumption\ the material behaves like a standard one as long as its
hardening state either is not saturated\ or undergoes a desaturation from a saturated hardening
state^ but it behaves as a perfectly!plastic material for a class of saturated hardening states for
which the stress state lies on the bounding:limit surface[

The purpose of this paper is to discuss the relevant features of the shakedown analysis and of
the steady!state response under cyclic loads for structures made of elasticÐplastic material with
saturation surface[ The analyses hereafter presented do not substantially di}er from the ones
already proposed in the literature for di}erent constitutive laws and are in fact performed par!
ticularizing standard procedures to the adopted constitutive model[ Nevertheless such analyses are
here performed with the main goal of showing that the adoption of a material model endowed
with saturation surface allows one to reproduce ratchetting collapse mode at a structural level[
Such a collapse mode is one of the relevant phenomena exhibited by hardening materials su}ering
cyclic load programs[ To this aim\ the classical static shakedown theorem "i[e[ Melan|s theorem#
in the context of internal variable plasticity theory "Maier\ 0876^ Comi and Corigliano\ 0880^
Polizzotto et al[\ 0880# is reviewed[ The problem of the shakedown load multiplier*evaluation of
the maximum value of the load multiplier s\ sa say\ such that shakedown occurs for a load domain
ampli_ed by s ¾ sa*is investigated\ showing that some indeterminancies or unbounded cases\
related to unlimited hardening material behaviour\ are ruled out for the adopted formulation[
Moreover\ borrowing a procedure already implemented in Panzeca and Polizzotto "0877#\ in case
of elastic perfectly!plastic solids subjected to cyclic loads\ the impending inadaptation mechanism
at shakedown limit state "s � sa# is studied for elasticÐplastic general isotropic:kinematic hardening
solids subjected to cyclic loads[ The impending collapse mechanism is\ in fact\ described by the
EulerÐLagrange equations related to the problem of the shakedown load multiplier[ A physical
interpretation of the relevant conditions whether in the stress space or in the static internal variable
space is given[

It is worth noting that when a shakedown analysis is performed for design purposes it is also
important to make some assessment on the cumulated plastic strains up to a shakedown condition
which eventually takes place[ Such a check is needful to avoid unserviceability of the structure
before shakedown occurs[ This task can be accomplished either by a step!by!step analysis for an
assigned load program\ likely cumbersome and time!consuming\ or by the use of an appropriate
bounding technique which is often adequate\ at least for very preliminary evaluations[ These
aspects are not pursued here because they are not the purpose of this paper[

The plan of the paper is as follows[ In Section 1 the adopted material model is described[ Section
2 is devoted to the static shakedown theorem while Section 3 addresses the problem of determining
the shakedown load multiplier via statical approach\ deriving the relevant equations[ In Section 4
the nature of the impending inadaptation mechanism at the shakedown limit is discussed and
interpreted whether in the stress space or in the static internal variable space[ Finally\ in Section 5
some numerical results relative to a simple structure are reported[

Notation*A compact notation is used[ Boldface letters are used for vectors and tensors[ The
scalar product between vectors and tensors is denoted by dot "=# and colon "]# symbols\ namely]
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u = v � uivi\ s] o � sijoji\ "C] o#ij � Cijhkokh\ where the indices denote Cartesian components and the
summation rule applies for repeated indices[ The symbol "M# means equality by de_nition\ while
a superimposed dot means derivative with respect to time t[ Other symbols will be de_ned where
they appear for the _rst time[

1[ The material constitutive model

A material with mixed kinematic:isotropic hardening is considered[ For simplicity\ the e}ects
of temperature changes on material data are disregarded[ The related dual internal variables
"Martin\ 0864^ Lemaitre and Chaboche\ 0889^ Lubliner\ 0889# are denoted as x � "X\ Y# and
j � "a\ b# where X � back!stress tensor with the associated kinematic internal variable tensor a

and Y � isotropic stress scalar variable with related kinematic internal variable b[ The material is
characterized by a free energy as]

C � 0
1
oe] C] oe¦Cin"j# "0#

where oe is the elastic strain tensor that\ making use of the decomposition of total strain o into the
reversible or elastic strain oe and the irreversible or plastic strain op\ is expressed as oe � o−op\ C is
the usual fourth order tensor of elastic moduli with its usual symmetries[ The _rst term on the
r[h[s[ in eqn "0# is a convex positive!de_nite thermodynamic potential assumed as a quadratic
function in the components of the strain tensor^ it represents the elastic strain energy per unit
volume[ The thermodynamic potential Cin"j# is assumed to be convex and di}erentiable in the j!
space[ In a plastic straining process\ the value of Cin"j# at a time t × 9 represents the energy density
required to promote the internal micro!structure mechanisms responsible for the change of the
hardening state from the virgin one at t � 9 "where x � j � 9 and Cin"j# � 9# to that at time t[

The following laws of state hold]

s � C] oe\ x �
1Cin"j#

1j
[ "1a\b#

Equations "1a\b# express the duality between the static and the kinematic variables[
As observed in Polizzotto and Fuschi "0884#\ experimental uniaxial stressÐstrain curves for

hardening materials show that the plastic sti}ness decreases and tends to vanish as plastic strain
monotonically increases\ that is the internal mechanisms occur with decreasing energy storage rate
so that the stored energy density Cin"j# tends to a _nite constant value[ Grounding on this
phenomenological behaviour\ valid for a certain class of ductile materials\ it is possible to postulate
the existence of a _nite hardenin` domain in the j!space de_ned by the inequality Cin"j# ¾ CÞ\ with
CÞ � material constant[ De_ning] GÞ"j# � Cin"j#−CÞ ¾ 9\ a saturation function in the kinematic
internal variable space is obtained[ The latter\ since eqn "1b# holds\ can be alternatively enforced
in the static internal variable space as G"x# ¾ 9[ The condition G"x# ¾ 9 introduces a hardening
domain in the x!space and an implicit limit upon the thermodynamic potential C"j#[ The hardening
domain in the x!space is surrounded by a surface G"x# � 9 called saturation surface of the material\
which collects all the hardening states x at the saturation limit[ With these assumptions\ hardening
states out of the hardening surface are not allowed for the considered material[ As long as G"x# ³ 9\
i[e[ the hardening state is below the saturation limit\ the plastic behaviour of the material can be
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described by standard internal!variable constitutive equations\ Halphen and Nguyen "0864#[ When
G"x# � 9\ i[e[ the hardening state is at the saturation limit\ the material plastic behaviour deviates
from the standard one because*if no return occurs from the saturated hardening state*the
hardening material behaviour is characterized by a static internal variable x moving on the
saturation surface[

Let the yield and saturation functions be of the form]

f � f "s\ x# M f9"s−X#−f0"Y# "2#

G � G"x# M G9"X#−G0"Y# "3#

respectively[ Both functions are convex with respect to their arguments and the subscripts 9 and 0
refer to the kinematic and isotropic part\ respectively[ For a material obeying the normality rule
"associative plasticity#\ the maximum intrinsic dissipation theorem "Martin\ 0864^ Lubliner\ 0889#
is the tool for deriving the pertinent ~ow laws\ where\ in this context\ the plastically admissibility
conditions are f "s\ x# ¾ 9\ G"x# ¾ 9[ Considering the internal variables altogether we get]

D"o¾p\ j¾# � max
"s\x#

"s] o¾p−x] j¾# subject to] f "s\ x# ¾ 9\ G"x# ¾ 9 "4#

where D"o¾p\ j¾# is the intrinsic dissipation function related to a _xed plastic deformation mode
speci_ed by the plastic strain rate tensor o¾p and the kinematic internal variable rate tensor j¾[ The
material ~ow laws are provided by the KuhnÐTucker conditions of problem "4#\ i[e[

o¾p � l¾
1f
1s

\ j¾ � −l¾
1f
1x −m¾

1G
1x "5a\b#

f "s\ x# ¾ 9\ l¾ − 9\ l¾f "s\ x# � 9 "6aÐc#

G"x# ¾ 9\ m¾ − 9\ m¾G"x# � 9 "7aÐc#

with l¾\ m¾ plastic and hardening coe.cients\ respectively[ By inspection of eqns "5# it arises] "i# the
plastic strain rate\ o¾p\ is\ as for a standard material\ normal to the yield surface^ "ii# the kinematic
internal variable rate\ j¾\ is the sum of two contributions\ one of which is normal to the yield
surface\ the other is normal to the saturation surface G"x# � 9[ That is\ with the present material
model\ j¾ can vanish even if o¾p � 9"l¾ × 9# but for a hardening state at the saturation limit "m¾ × 9#^
it is not so for a standard material "not endowed with saturation surface# in which j¾ � 9 if and
only if o¾p � 9[ Finally\ eqns "6# and "7# are the plastic and the saturation loading:unloading
conditions\ respectively\ which l¾ and m¾ have to comply with[

As a consequence of the convexity of f "s\ x# and G"x# the following inequality also holds]

"s−s¹ #] o¾p−"x−x¹ #] j¾ − 9[ "8#

The latter expresses\ in the present context\ an extension of the Drucker stability postulate where
"s\ x# and "o¾p\ j¾# correspond to each other through eqns "5#Ð"7# while "s¹ \ x¹ # are any set of plastically
admissible stresses and static internal variables\ i[e[ f "s¹ \ x¹ # ¾ 9 and G"x¹ # ¾ 9[ Condition "8# holds
as an equality either for s¹ � s and x¹ � x\ in which case o¾

p and j¾ may be nonvanishing\ or for
o¾
p � 9 and j¾ � 9\ in which case s and x may di}er from s¹ and x¹ \ respectively\ provided f and G

are smooth "as implicitly assumed#[
For a complete discussion of the material model and a detailed characterization of eqns "5#Ð"7#
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Fig[ 0[ Geometrical sketch representing ] "a# the saturation surface and the yield surface in the x!space ^ and "b# the yield\
envelope and limit surfaces in the s!space[

refer to Fuschi and Polizzotto "0885#[ For subsequent use attention is now focused on a geometrical
description of the adopted material model whether in the x!space or in the s!space[ To this aim
we assume a convex saturation surface as the one depicted in Fig[ 0"a#[ With reference to the
_gure we can assert the following[ As long as the point "X\ Y# belongs to the saturation surface\
G"X\ Y# � 9\ while taking Y � YÞ � const ðe[g[ points like "XÞ\ YÞ# and "XÞÞ\ YÞ# in Fig[ 0"a#Ł\ the
yield surface f � 9 correspondingly moves in the s!space ðe[g[ f "s\ XÞ\ YÞ# � 9 and f "s\ XÞÞ\ YÞ# � 9\
respectively\ in Fig[ 0"b#Ł giving rise to an envelope surface F"s\ YÞ# � 9\ whose position and shape
depends on YÞ "Fig[ 0"b##[ On letting Y to vary in such a way that point "X\ Y# moves wherever on
G � 9\ a one!parameter family of envelope surfaces F"s\ Y# � 9 is generated in s!space[ Moreover
it is possible to demonstrate that this family is enveloped by a limit surface*envelope surface of all
the yield surface con_gurations corresponding to admissible hardening states*whose expression is
FL"s# � F"s\ YL# � 9 "Fig[ 0"b##[ The latter corresponds to points "X\ Y# travelling on the curve
G"X\ YL# � 9\ curve G in Fig[ 0"a#\ which collects the set of so!called critical hardenin` states[ The
peculiarity of these points is the following[ If we assume a material which exhibits positive!isotropic
hardening*i[e[ softening is excluded*whose yield function is expressed by eqn "2# in which a
linear dependence on Y is also assumed\ the yield function f "s\ x# � 9 possesses in the x!space a
conical shape representation "Fig[ 0"a##[ The curve G is the points| locus at which the yield function
is in full external contact with the saturation function G"x# � 9\ i[e[ it collects points "X\ YL# at
which the yield and the saturation functions admit the same normal[ Of course the position and
shape of curve G is related to the assumed forms of the yield and the saturation functions\
f "s\ x# � 9 and G"x# � 9\ respectively\ and it must be consistently located[ In what follows\ for
simplicity\ we exclude softening material behaviour and assume f0"Y# in eqn "2# as a linear function
of Y[
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A geometrical sketch of the mutual relationships existing between the saturation surface and the
envelope surface at an arbitrarily chosen Y � YÞ is drawn in Figs 1 and 2\ respectively[ A non!
saturated state "XÞ\ YÞ# is considered ði[e[ G"XÞ\ YÞ# ³ 9Ł and two stress states\ s¹ and s¹¹ \ at the yield
limit are represented in Fig[ 1"a#[ Both of them allow plastic strain rates which develop following
the normality rule ðeqn "5a#Ł[ Correspondingly in Fig[ 1"b# two di}erent positions of the yield
surface in X!space are located for s � s¹ and s � s¹¹ \ respectively[ Both surfaces contain the static
internal variable state XÞ\ and the inner normals to them evaluated at XÞ give the only!plastic!
contribution "l¾ 1f:1X# to the kinematic internal variable rate a¾[ A saturated state is considered "i[e[
G"XÞ\ YÞ# � 9# and\ as before\ two stress states\ s¹ and s¹¹ \ at the yield limit are represented in Fig[
2"a#\ with s¹ lying also on the relevant envelope surface F"s\ YÞ#[ Correspondingly in the X!space\
Fig[ 2"b#\ two positions of the yield surface can be located as above[ However\ looking at the
kinematic internal variable rate a¾\ besides the plastic contribution in a nonvanishing saturation!
nature contribution\ along the inner normal to G"X\ YÞ# at XÞ\ arises[ In this case the contributions
to b¾ are given in Fig[ 3"a\ b# for YÞ × YL and YÞ � YL[

2[ The shakedown problem

Let a continuous solid body\ occupying the domain V surrounded by the surface S\ be referred
to a Cartesian orthogonal co!ordinate system x � "x0\ x1\ x2# in its undisturbed initial state\ and let
the relevant constituent material obey eqns "1# and "5#Ð"7#[ The body is constrained on Su W S and
is subjected to external actions as] body forces b¹ in V\ imposed strains "e[g[ thermal strains# o¹

u in

Fig[ 1[ Geometrical sketch that\ in a non!saturated material state "XÞ\ YÞ#\ represents ] "a# the envelope surface F"s\ YÞ# � 9
and the yield surface f "s\ XÞ\ YÞ# � 9 ^ and "b# the intersection of the saturation surface with plane Y � YÞ and the locations
of the yield surface relative to stress states s¹ and s¹¹ at the yield limit[
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Fig[ 2[ Geometrical sketch that\ in a saturated material state "XÞ\ YÞ#\ represents ] "a# the envelope surface F"s\ YÞ# � 9 and
the yield surface f "s\ XÞ\ YÞ# � 9 ^ and "b# the intersection of the saturation surface with plane Y � YÞ and the locations of
the yield surface relative to stress states s¹ and s¹¹ at the yield limit[

V\ tractions t¹ on St � S−Su\ and imposed displacements u¹ on Su[ These external actions are linearly
expressed in terms of a vector P of independent load parameters\ and vary periodically with time
period Dt\ i[e[ P"t¦Dt# � P"t# for all t − 9[ For simplicity\ P is viewed as two!dimensional in the

Fig[ 3[ Contributions to b¾ for the stress state s � s¹ depicted in Fig[ 2"a\ b# ] "a# at an arbitrarily chosen YÞ × YL ^ and "b#
at YÞ � YL[
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following\ but this restriction can be easily removed[ As already asserted in Section 0\ the shake!
down problem is herein discussed with reference to an assigned cyclically varying load^ the latter\
if that is the case\ can be viewed as the Envelope Load History of a _xed convex load domain p[
Moreover it is assumed that both geometric and inertia e}ects are negligible\ such that the
in_nitesimal displacement theory for quasi!static loads is applicable[ Thermal e}ects over the
constitutive laws are also assumed negligible[

Under the above hypotheses\ the shakedown problem consists in ascertaining those a priori
conditions\ if any\ such that the structure subjected to the cyclic load P"t# will eventually behave
elastically and that the overall plastic dissipation work produced in the transient "i[e[ initial elasticÐ
plastic# phase is bounded even if t : �[

In the shakedown theory the relevant criteria for shakedown are the statical theorem of Melan and
the kinematical theorem of Koiter "Koiter\ 0859#\ both of which have already been generalized to non!
linear hardening by Maier "0876#\ Maier and Novati "0876#\ and in the case of material models endowed
with dual internal variables and thermodynamic potential by Comi and Corigliano "0880#\ Polizzotto
et al[ "0880#[ In the following\ by standard arguments "Maier\ 0876^ Polizzotto et al[\ 0880^ Corradi\
0883#\ the statical shakedown theorem is extended to the considered material model[

2[0[ Statical shakedown theorem

A necessary and su.cient condition for shakedown to occur is that there exist a set "s¼R\ x¼ # of
static variables\ namely a residual stress _eld s¼R"x# and a static internal variable _eld x¼ "x#\ both
time!independent\ such that

f "sE"x\ P"t##¦s¼R"x#\ x¼ "x## ¾ 9^ G"x¼ "x## ¾ 9 in V×ð9\ DT Ł "09#

where sE"x\ P"t## is the elastic response of the body to the load P"t# and t denotes the time variable
in the cycle\ 9 ¾ t ¾ Dt[

Necessity*It must be proven that\ if shakedown occurs\ then "09# hold[ The necessity is self!
evident as in fact at shakedown no further plastic strains and kinematic internal variables are
produced in addition to those cumulated in the transient phase and the subsequent structural
behaviour is elastic[ On denoting as s�"x# and x�"x# the residual stresses and the static internal
variables\ respectively\ correspondent to the plastic strains and kinematic internal variables at the
end t� − 9 of the transient phase\ the actual stresses s"x\ t# � sE"x\ P"t##¦s�"x# and static internal
variables x"x\ t# � x�"x# evaluated at the "general# time t � t�¦t comply with the constitutive
equations and thus\ eqns "09# are satis_ed if one chooses s¼R 0 s� and x¼ 0 x�[ Q[E[D[

Suf_ciency*It must be proven that under validity of "09# for some s¼R"x# and x¼ "x# shakedown
occurs[ Let by hypothesis a set "s¼R\ x¼ # there exists such that conditions "09# hold[ Let the actual
response be denoted by symbols as s"x\ t#\ o¾p"x\ t#\ [ [ [ where t − 9 is the general time variable and
let the stress argument of the _rst eqn "09# be denoted as follows]

s¼ "x\ P"t## M sE"x\ P"t##¦s¼R"x#[ "00#

Applying "8#\ valid in V and for t − 9 we can write]

J M "s−s¼ #] o¾p−"x−x¼ #] j¾ "01a#

J"x\ t# − 9 in V for all t − 9[ "01b#
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Making use of the identity o¾
p � o¾−o¾

E−A] "s¾−s¼¾ #\ where oE is the total strain in the elastic response
and A � C−0\ and integrating over V\ eqn "01a# can be posed in the form]

gV

J dV � gV

"s−s¼ #] "o¾−o¾
E# dV−gV

"s−s¼ #] A] "s¾−s¼¾ # dV−gV

"x−x¼ #] j¾ dV "02#

Since the _rst integral on the r[h[s[ vanishes by the virtual work principle applied to the self!
equilibrated _eld "s−s¼ # and the self!compatible _eld "o¾−o¾

E# "i[e[ compatible with zero dis!
placements on Su#\ eqn "02# can be rewritten as]

gV

"s−s¼ #] A] "s¾−s¼¾ # dV¦gV

"x−x¼ #] j¾ dV � −gV

J dV "03#

Following a procedure _rst devised by Maier "0876#\ it can be easily shown that the two integrals
on the l[h[s[ of eqn "03# are equivalent to

gV

"s−s¼ #] A] "s¾−s¼¾ # dV � Lþe\ gV

"x−x¼ #] j¾ dV � Lþp "04a\b#

where Le"t# and Lp"t# have the following alternative expressions]

Le"t# �
0
1 gV

"s−s¼ #] A] "s−s¼ # dV=t

�
0
1 gV

"sR−s¼R#] A] "sR−s¼R# dV=t "05a#

Lp"t# � gV

ðC"j#−C"j¼#−x¼ ] "j−j¼#Ł dV=t

� gV

ðV"x¼ #−V"x#−j] "x¼−x#Ł dV=t "05b#

where sR � s−sE denotes the actual residual stress _eld\ and V"x# � x] j−C"j# is the Legendre
transform of the thermodynamic potential C"j#[ Moreover Le and Lp\ hence L M Le¦Lp\ are
positive de_nite as a consequence of the positive de_niteness of A and of the convexity of C and
V "Maier\ 0876^ Polizzotto et al[\ 0880#[ Therefore\ eqn "03# becomes\ in virtue of eqn "01b#]

Lþ"t# � Lþe"t#¦Lþp"t# � −gV

J dV ¾ 9 for all t − 9[ "06#

This result implies that the positive de_nite functional L"t# decreases monotonically with time as
long as J × 9\ even in a small portion of V[ Because L cannot assume negative values\ there will
certainly be a time t � t� "adaptation time# after which L assumes a constant value\ i[e[ Lþ � 9 for
t − t�\ thus\ by eqns "06# and "01b#\ it will be J"x\ t# � 9 identically after t�\ which is possible if\
and only if\ o¾p � 9\ j¾ � 9 in V for t − t�\ that is\ if and only if shakedown occurs[ Q[E[D[
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3[ The shakedown load multiplier

Let the loads be speci_ed to within a scalar factor s − 9\ i[e[ P � P"t# � sPÞ"t#\ where PÞ"t# is a
reference load[ The maximum value of s\ sa say\ such that for any s ¾ sa shakedown occurs\ is the
shakedown load multiplier of the given structure[ The latter can in general be found using either
Melan|s or Koiter|s theorems\ but is here evaluated by application of Melan|s theorem given in
Section 2[

To this aim PÞ"t# is considered speci_ed for 9 ¾ t ¾ Dt and thus\ we set the problem]

sa � max
"s\s¼R\x¼ #

s subject to] "07a#

f "s¼ "x\ t#\ x¼ "x## ¾ 9 in V×ð9\ DT Ł "07b#

G"x¼ "x## ¾ 9 in V "07c#

s¼ "x\ t# � ssE"x\ PÞ"t##¦s¼R"x# in V×ð9\ DT Ł "07d#

div s¼R"x# � 9 in V\ s¼R"x# = n � 9 on St "07e\f#

where the cupped symbols "=¼# refer to the unknown static variables required by Melan theorem[
More precisely\ eqns "07b\c# are the admissibility conditions to be satis_ed by the stresses s¼ given
by "07d# and by the static internal variables x¼ "x#\ respectively^ eqns "07e\f# state that s¼R are residual
stresses^ n is the outward unit normal to S[

Applying the Lagrange multiplier method\ we consider the following augmented functional]

Y � −ks¦g
DT

9 gV

l¾"x\ t# f "s¼ "x\ t#\ x¼ "x## dV dt¦gV

m"x#G"x¼ "x## dV

¦gV

v"x# = div s¼R"x# dV−gSt

v"x# = s¼R"x# = n dSt "08#

where k × 9 is some constant scalar introduced for dimensionality sake and l¾"x\ t# − 9\ m"x# − 9\
v"x# are unknown Lagrangian multiplier functions\ whose physical meaning will be clari_ed further
on[ Making use of the identity]

gV

v"x# = div s¼R"x# dV � gS

v"x# = s¼R"x# = n dS−gV

s¼R"x#] 9sv"x# dV "19#

"divergence theorem# where 9s"=# is the symmetric part of the gradient operator\ i[e[
9sv � 0

1
"grad v¦gradT v#\ substituting and reordering\ the _rst variation of Y � Y"s\ s¼R\ x¼ \ l¾\ m\ v#

reads]

dY � $−k¦g
DT

9 gV

l¾
1f
1s¼

] sE dV dt% ds

¦gV $g
DT

9

l¾
1f
1s¼

dt−9sv% ds¼R dV¦gSu

v = ds¼R = n dSu¦gV $g
DT

9

l¾
1f
1x¼ dt¦m

1G
1x¼ % dx¼ dV
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¦g
DT

9 gV

f "s¼ \ x¼ #dl¾ dV dt¦gV

G"x¼ #dm dV¦gV

dv = div s¼R dV−gSt

dv = s¼R = n dSt "10#

where the arguments have been omitted for brevity[ The EulerÐLagrange equations of problem
"07aÐf# turn out to be]

f "s¼ \ x¼ # ¾ 9\ l¾ − 9\ l¾f "s¼ \ x¼ # � 9 in V×ð9\ DT Ł "11aÐc#

s¼ � sas
E¦s¼R\ o¾

p M l¾
1f
1s¼

in V×ð9\ DT Ł "11d\e#

G"x¼ # ¾ 9\ m − 9\ mG"x¼ # � 9 in V "11fÐh#

Dop M g
DT

9

o¾
p dt in V\ Dop � 9sv in V\ v � 9 on Su "11i\k#

−Dj M g
DT

9

l¾
1f
1x¼ dt¦m

1G
1x¼ in V\ Dj � 9 in V "11l\m#

div s¼R � 9 in V\ s¼R = n � 9 on St "11n\o#

g
DT

9 gV

sE] o¾p dV dt � k × 9 "11p#

The physical meanings of the Lagrangian multipliers l¾ and m arise as plastic and saturation
multipliers\ respectively[ Equations "11aÐc\ fÐh# are the plastic and saturation loading:unloading
conditions while "11d\e# express the stress and plastic strain rates at s � sa[ Dop and Dj\ given by
eqns "11i# and "11l#\ have the meanings of cumulated plastic strains and kinematic internal
variables over a complete cycle ð9\ DT Ł\ respectively[ Equations "11j\k# express that the plastic strain
increments Dop\ over a complete cycle ð9\ DT Ł\ constitute a _eld compatible with the displacements v

in V and zero displacements on Su\ while "11m# expresses the condition to be satis_ed by the
cumulated kinematic internal variables over a complete cycle[ Equations "11n\o# are the already
given conditions on the residual stresses s¼R[ Finally\ eqn "11p# expresses that the unampli_ed
external actions do positive work through the plastic strain rates o¾

p in a complete cycle\ Polizzotto
et al[ "0880#[

The latter equations describe the shakedown limit state with its plastic deformation process and
related impending inadaptation collapse\ promoted by the shakedown limit loading Pa"t# 0 saPÞ"t#[
The pair Dop\ Dj satisfying eqns "11jÐk# and "11m#\ respectively\ constitute a {{plastic accumulation
mechanism|| "Polizzotto et al[\ 0880#\ or\ alternatively\ a {{kinematically admissible plastic strain
cycle|| "Koiter\ 0859#[

Moreover\ eqns "11aÐp# are similar to the analogous equations for perfect plasticity presented
in Panzeca and Polizzotto "0877# or the ones presented in Polizzotto et al[ "0880# for elastic plastic
materials with internal variables\ as in fact in the present approach the only di}erences are the
contribution to Dj coming from the adoption of a material model endowed with a saturation
surface[ The arguments aimed to assert the uniqueness features of the solution to "11aÐp# are
obviously the same of Polizzotto et al[ "0880# for the analogous problem and are here omitted[
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Nevertheless attention has to be focused on the physical understanding of the limit state described
by eqns "11aÐp#[

As proved in Panzeca and Polizzotto "0877#\ in the case of perfectly plastic solids subjected to
cyclic loads\ the EulerÐLagrange eqns "11aÐp# provide a solution which describes the gradient\
with respect to the load multiplier\ of the steady!state response of the solid body subjected to the
cyclic loads at the shakedown limit state[ The physical interpretation of such a "EulerÐLagrange#
condition enables one to recognize the impending inadaptation collapse mechanism at the shake!
down limit state "i[e[ for s � sa#[ This task is addressed in the next Section[

4[ Impending inadaptation collapse mechanism at shakedown limit state

At the shakedown limit\ i[e[ at s � sa\ the kinematic variables have to satisfy conditions "11j\k\m#[
On taking into account the assumed expressions for the yield and the saturation functions\ eqns
"2# and "3#\ and remembering that x � "X\ Y#\ j � "a\ b#\ we can write

Dop � g
DT

9

l¾
1f9
1s¼

dt "12#

Da � g
DT

9

l¾
1f9
1X


dt−m
1G9

1X

� 9 in V "13#

Db � g
DT

9

l¾
1f0
1Y


dt¦m
1G0

1Y

� 9 in V "14#

where "12# expresses the cumulated plastic strains over a complete cycle ð9\ DT Ł "satisfying eqns
"11j\k## and "13#\ "14# express the cumulated kinematic internal variables over a complete cycle
ð9\ DT Ł as a kinematic hardening\ Da\ and an isotropic hardening\ Db\ components\ respectively[
Equation "11m# has been accounted for in eqns "13# and "14#[ Making use of the identity
1f9:1s¼ � −1f9:1X
 and remarking that f0"Y
# is time!independent\ by substituting "12# in "13# and
rearranging we get]

Dop � −m
1G9

1X

in V "15#

Dl
1f0
1Y


� −m
1G0

1Y

in V "16#

with Dl � ÐDT
9 l¾ dt × 9 ðnote that l¾ � 9 everywhere in V×ð9\ DT Ł would be in contrast with "11p#Ł

and m − 9[ In what follows we discuss the impending inadaptation collapse mechanism at s � sa

on the basis of eqns "15# and "16#[ The straightforward consequences on the remaining eqns "11aÐ
h\nÐp# are omitted for brevity[

In the assumed hypothesis of a positive!isotropic:kinematic hardening material endowed with a
saturation surface of general shape as the one depicted in Fig[ 0"a#\ two cases can be distinguished
according to whether the material exhibits or not isotropic hardening[
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Case 0] Nonzero isotropic hardening[

In this case it is 1f0:1Y
 × 9 [Y
 − 9 in V and thus\ from eqn "16# we get]

m × 9 in V\
1G0

1Y

³ 9 in V "17#

The _rst of eqn "17# implies G"X
\ Y
# � 9\ i[e[ "X
\ Y
# is a saturated state^ whereas the second eqn
"17# implies Y
 × Y	\ Y	 being the value at which 1G0:1Y
 � 9 "refer also to Fig[ 0"a##[ Also\ from
"15# we have] "i# for all the saturated states "X
\ Y
# with Y
 × Y	 at which 1G9:1X
 � 9 in V\ it is
Dop � 9 in V\ hence ratchettin` occurs\ and "ii# for all the saturated states "X
\ Y
# with Y
 × Y	 at
which 1G9:1X
 � 9 in V\ it is Dop � 9 in V\ hence alternatin` plasticity occurs "e[g[ points X
\ Y
 over
the plateau Y � Y9 in Fig[ 0"a##[ Obviously\ at the edge points on the plateau Y � Y9 both
mechanisms can take place[

Case 1] Zero isotropic hardening[

In this case it is 1f0:1Y
 � 9 [Y
 − 9 in V\ and thus from eqn "16# we get either]

m � 9 in V\
1G0

1Y

� 9 in V "18a#

or

m � 9 in V\
1G0

1Y

� 9 in V "18b#

or even

m �
1G0

1Y

� 9 in V "18c#

If eqn "18a# is valid we have G ³ 9 in V\ i[e[ the material hardening state is non!saturated and
from "15# we get Dop � 9 in V\ hence alternatin` plasticity occurs for all states "X
\ Y
# inside G � 9[
If "18b# is valid we have] Y
 0 Y	\ G � 9 and being 1G9:1X
 =Y	 � 9 from "15# we get Dop � 9 in V\
hence ratchettin` occurs for all the saturated states at Y
 � Y	[ Finally if "18c# is valid\ alternatin`
plasticity occurs once again for all the non!saturated states inside G � 9 at Y
 � Y	[ The types of
impending inadaptation mechanism modes allowed at s � sa are so fully described grounding on
eqns "15# and "16#[

Summarizing\ one can state that\ with the present material model\ the impending inadaptation
collapse mode is reverse plasticity if the limit hardening state X
\ Y
 is nonsaturated\ and ratchetting
if this limit state is saturated\ except over the plateau "if any# Y � Y9\ where reverse plasticity is
also allowed[

5[ Two!degrees!of!freedom bar structure

In order to show the main features of the cyclic response of a structure made of an elasticÐplastic
material obeying the discussed constitutive model\ a numerical example is hereafter presented[ A
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Fig[ 4[ Two!degrees!of!freedom bar structure subjected to cyclic load ] "a# geometry and loading scheme ^ and "b# load
history[

simple structure consisting of 00 parallel pinned bars\ all of equal length L � 19 cm\ _xed at the
upper end and joined to a rigid block at the lower end\ Fig[ 4"a#\ is considered[ The bars have
equal cross section of area A � 0 cm1 and are located at constant intervals c � 1 cm[ The structure
possesses two degrees of freedom which are assumed as the vertical displacements U0 and U1 at
the left and right ends of the rigid block\ respectively[ Consistently with the degrees of freedom
two loads\ P0"t# � PÞ−P"t# and P1"t# � PÞ¦P"t#\ are applied[ PÞ is a constant!value load and P"t#
varies in time between the closed interval ð−P9\ P9Ł in the shape given in Fig[ 4"b#[

The bars are all made of an elasticÐplastic material endowed with saturation surface obeying
the constitutive laws presented in Section 1 particularized for the uniaxial case[ Namely\ it has
been assumed C � B"a1¦ab1#:1\ f � =s−X=−sy\ G � =X=−G0"Y#^ with G0"Y# � c9sy¦
Y"0−c0Y:YL# and constants values as] c9 � 9[4\ c0 � 9[3\ YL � 19^ also\ sy � 19 kN:cm1\
E � 10\999 kN:cm1\ B � E:2\ a � 1:2[ The stressÐstrain curve for monotonically increasing strain
is shown as line OAB in Fig[ 5\ where the perfect plasticity stage is reached at s � 31 kN:cm1 "at
which a saturated state is attained#[ In the same _gure the stress response to a periodic strain
history\ −9[6) ¾ o ¾ 9[6)\ is also reported[ Due to the relatively large strain amplitude the
saturated condition is periodically attained whether in tension or in compression[

Despite its simplicity the examined structure is able to reproduce all the expected inadaptation
modes including the ratchetting behaviour which is here obtainable for the presence of a bound
on the hardening capacity of the material\ as shown in the following[ A fully implicit step!by!step
analysis of the structure of Fig[ 4"a# has been carried out for eight loading cycles and for three
di}erent loading conditions^ namely]

*load condition "A#] PÞ� 014 kN\ P9 � 39 kN^
*load condition "B#] PÞ� 64 kN\ P9 � 64 kN^
*load condition "C#] PÞ� 014 kN\ P9 � 64 kN[
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Fig[ 5[ StressÐstrain curve of a uniaxial specimen loaded by a monotonically increasing total strain "curve OAB# and by
a cyclic total strain "curve OAA0A1 [ [ [#[

The results obtained are reported in Figs 6Ð8[ In each _gure the responses concerning the applied
loading conditions are represented as] small!dashed line ðcondition "A#Ł\ dashed line ðcondition
"B#Ł and solid line ðcondition "C#Ł\ respectively[

Condition "A# is characterized by a purely elastic steady!state response\ that is shakedown[
Figure 6 shows the displacementsÐcycles curves which\ starting from the third cycle exhibit a linear
elastic cyclic behaviour[ The same behaviour is displayed in Fig[ 7 where the loadÐdisplacement
curves are reported[ Figure 8 shows the plastic strain cyclic evolution at the extreme bars\ bar è0
and è00\ and again the shakedown condition transpires by the circumstance that plastic strain
ceases starting from the third cycle[

Condition "B# gives rise to alternating plasticity response mode[ As in fact the displacementÐ
cycles curves "Fig[ 6# exhibit a nonlinear alternating cyclic behaviour[ The loadÐdisplacement
curves "Fig[ 7# show the elastic plastic steady response in the shape of a structural periodic hysteretic
cycle[ The plastic strain evolution at bar è0 and è00\ Fig[ 8\ is in fact characterized by an alternating
plastic strain production with a zero net plastic strain accumulation in the steady!cycle[

Condition "C# produces a ratchetting response mode^ namely\ the displacementÐcycles curves\
Fig[ 6\ exhibit a nonlinear cyclic behaviour with a net displacement cyclic growth[ The same
structural behaviour can be detected by inspection of the loadÐdisplacement curves in Fig[ 7 and
of the plastic strain evolution curves at bars è0 and è00 reported in Fig[ 8[

Finally\ on taking into account that the loading conditions considered in Fig[ 4 for the examined
structure are fully equivalent to a constant load\ 1PÞ\ and a variable couple\ P"t#L t $ ð9\ DtŁ\ both
applied at the mid point of the rigid block\ the shakedown load multiplier sa has been computed
grounding on problem "07aÐf#[ To this aim\ let s¹E

i and s½E
i "t# t $ ð9\ DtŁ be the elastic stress responses

to the constant load and the variable couple in the ith bar\ respectively\ and let
sE

i "t# M s¹E
i ¦ss½E

i "t# t $ ð9\ DtŁ be the elastic response to the constant load 1PÞ and to the ampli_ed
variable couple\ sP"t#L[ Problem "07aÐf# can thus\ be particularized as follows]
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Fig[ 6[ Response of the structure of Fig[ 4 to the loading conditions "A# small!dashed line\ "B# dashed line and "C# solid
line ] "a# rigid block displacement U0 history ^ and "b# rigid block displacement U1 history[

sa � max
"s\ri\Xi#

s subject to]sE¦
i ¦ri−Xi ¾ sy^ −"sE−

i ¦ri−Xi# ¾ sy^

=Xi= ¾ G0"YL#^ s
nb

i�0

Airi � 9^ for i � 0\ [ [ [ \ nb "29#

where nb � number of bars\ ri � self!stress in the ith bar while sE¦
i and sE−

i denote the maximum
and the minimum elastic stress values attained in the ith bar in ð9\ DtŁ\ respectively[ It is worth
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Fig[ 7[ Response of the structure of Fig[ 4 to the loading conditions "A# small!dashed line\ "B# dashed line and "C# solid
line ] "a# P0−U0 curve ^ and "b# P1−U1 curve[

noting that the saturation condition =Xi= ¾ G0"Yi# arising from problem "07aÐf# for the examined
case can be enforced\ for the assumed material model\ as =Xi= ¾ G0"YL# so obtaining a simpler
linear programming problem[ Figure 09 shows\ in a dimensionless form\ the interaction "or
generalized Bree# diagram of the given structure as the amplitude of the variable couple P9L:ME

vs the constant load 1PÞ:PU\ where ME � 779 kNcm is the elastic limit couple and PU � 351 kN in
the plastic limit constant load[ The shakedown limit load curve\ reported as solid line\ exhibits a
constant branch pertaining to impending reverse plasticity inadaptation mode and a linear branch
pertaining to impending ratchetting inadaptation mode[ It is worth noting that this latter branch
can exist only if a material endowed with saturation surface is considered\ as in fact\ for a material
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Fig[ 8[ Response of the structure of Fig[ 4 to the loading conditions "A# small!dashed line\ "B# dashed line and "C# solid
line ] "a# plastic strain evolution at bar è0 ^ and "b# plastic strain evolution at bar è00[
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Fig[ 09[ Interaction diagram for the bar structure of Fig[ 4 ] shakedown limit load curve "solid line#\ plastic collapse limit
load curve "small!dashed line# elastic limit load curve "dashed line# and analyzed load conditions[

without saturation limit condition\ only the constant unbounded branch would exist\ the latter
giving rise just to alternating plasticity impending inadaptation mode and this at any _xed constant
load value[ The plastic collapse limit load curve and the elastic limit load curve are also reported
as small!dashed line and dashed line\ respectively\ as well as the load conditions "A#\ "B# and "C#
previously analyzed[

6[ Concluding remarks

The main _ndings of the present study can be synthesized as follows]

"0# A recently developed elasticÐplastic internal variable constitutive model with hardening satu!
ration surface has been implemented into the shakedown theory[ The adoption of a saturation
surface in the internal variable space results in an e}ective bound on the material hardening
capacity\ so that a perfectly!plastic behaviour can be reached in a saturated limit state[

"1# A statical Melan!type shakedown theorem has been formulated and proved for the considered
material model[

"2# The impending inadaptation collapse mechanism at shakedown limit state has been analyzed
starting from the optimality conditions relative to the determination of the shakedown load
multiplier\ the latter performed in a statical fashion[

"3# The present approach allows to fully describe the possible inadaptation collapse mechanisms\
i[e[ alternating plasticity and ratchetting\ overtaking all the drawbacks related to unlimited
isotropic:kinematic hardening models[

It is worth noting that similar results are obtainable with approaches based on the assumption
of a bounding:limit surface in the stress space*which turns out to be a bound on the hardening
capacity of the material*but these approaches\ to the author|s knowledge\ are available for



P[ Fuschi : International Journal of Solids and Structures 25 "0888# 108Ð139 128

materials obeying very simple constitutive models "Von Mises!type models#[ On the contrary the
proposed approach*which bounds the hardening capacity of the material in the internal variable
space*is quite general and appears to be suitable for a rather large class of constitutive models
for elasticÐplastic hardening materials[
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